Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Vaccine ; 42(3): 608-619, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38142216

RESUMO

In this study, we evaluated the immunogenicity and protective immunity of in vitro transcribed Venezuelan equine encephalitis virus (VEEV TC-83 strain) self-amplifying RNA (saRNA) encoding the SARS-CoV-2 spike (S) protein in wild type (S-WT) and stabilized pre-fusion conformations (S-PP). Immunization with S-WT and S-PP saRNA induced specific neutralizing antibody responses in both K18-Tg hACE2 (K18) and BALB/c mice, as assessed using SARS-CoV-2 pseudotyped viruses. Protective immunity was assessed in challenge experiments. Two immunizations with S-WT and S-PP induced protective immunity, evidenced by lower mortality, lower weight loss and more than one log10 lower subgenomic virus RNA titers in the upper and lower respiratory tracts in both K18 and BALB/c mice. Histopathologic examination of lungs post-challenge showed that immunization with S-WT and S-PP resulted in a higher degree of immune cell infiltration and inflammatory changes, compared with control mice, characterized by high levels of T- and B-cell infiltration. No substantial differences were found in the presence and localization of eosinophils, macrophages, neutrophils, and natural killer cells. CD4 and CD8 T-cell depletion post immunization resulted in reduced lung inflammation post challenge but also prolonged virus clearance. These data indicate that immunization with saRNA encoding the SARS-CoV-2 S protein induces immune responses that are protective following challenge, that virus clearance is associated with pulmonary changes caused by T-cell and B-cell infiltration in the lungs, but that this T and B-cell infiltration plays an important role in viral clearance.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas Virais , gama-Globulinas , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunização , Glicoproteína da Espícula de Coronavírus/genética
2.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835186

RESUMO

Since November 2021, Omicron has been the dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant that causes the coronavirus disease 2019 (COVID-19) and has continuously impacted human health. Omicron sublineages are still increasing and cause increased transmission and infection rates. The additional 15 mutations on the receptor binding domain (RBD) of Omicron spike proteins change the protein conformation, enabling the Omicron variant to evade neutralizing antibodies. For this reason, many efforts have been made to design new antigenic variants to induce effective antibodies in SARS-CoV-2 vaccine development. However, understanding the different states of Omicron spike proteins with and without external molecules has not yet been addressed. In this review, we analyze the structures of the spike protein in the presence and absence of angiotensin-converting enzyme 2 (ACE2) and antibodies. Compared to previously determined structures for the wildtype spike protein and other variants such as alpha, beta, delta, and gamma, the Omicron spike protein adopts a partially open form. The open-form spike protein with one RBD up is dominant, followed by the open-form spike protein with two RBD up, and the closed-form spike protein with the RBD down. It is suggested that the competition between antibodies and ACE2 induces interactions between adjacent RBDs of the spike protein, which lead to a partially open form of the Omicron spike protein. The comprehensive structural information of Omicron spike proteins could be helpful for the efficient design of vaccines against the Omicron variant.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes , COVID-19/virologia , Vacinas contra COVID-19 , Mutação , Ligação Proteica , Conformação Proteica , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Vaccine ; 41(4): 955-964, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36586740

RESUMO

INTRODUCTION: A hepatitis B vaccination (HepB) series with an initial dose of hepatitis B immune globulin (HBIG) is the recommended prophylaxis for infants born to mothers with chronic hepatitis B virus (HBV) infection and for HBV-exposed persons without known protection. The HepB and HBIG are administered at different sites (limbs). Instances of HepB and HBIG administered at the same site are documented but the impact on immune responses to HepB remains unanswered. METHODS: Newborn and adult BALB/c mice received one dose of HepB at time zero alone or with HBIG in the same or different sites, followed by 2 additional doses of HepB at 3 and 10 weeks (newborn mice) or 4 and 16 weeks (adult mice). To study memory responses mice were given a 4th, booster, dose of HepB at 26 weeks and B cells analyzed. RESULTS: Administration of HepB with HBIG resulted in reduced responses to HepB following the first 2 doses, regardless of site, compared to mice that received HepB only. Lower levels of antibody to HBV surface antigen (anti-HBs) were observed at the end of the 3-dose series (p < 0.0001) in all groups of newborn mice that received HepB and HBIG. In adult mice, this difference was only seen when HepB and HBIG were delivered at the same site. However, following a HepB booster at 26 weeks, HBsAg-specific B-cell expansion and memory phenotype were not impacted by initial HBIG administration CONCLUSION: Administration of HBIG with HepB can delay and reduce responses to HepB in mice. Our findings suggest that the initial circulating levels of HBIG could prevent infection despite an impaired response to vaccine and support the current recommendation of assessing seroprotection after series completion for infants born to HBV carrier mothers, including in cases where vaccine and HBIG are administered incorrectly at the same site.


Assuntos
Vacinas contra Hepatite B , Hepatite B , Imunoglobulinas , Animais , Camundongos , Hepatite B/prevenção & controle , Anticorpos Anti-Hepatite B/sangue , Antígenos de Superfície da Hepatite B , Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/uso terapêutico , Hepatite B Crônica/prevenção & controle , Imunoglobulinas/administração & dosagem
4.
J Virol ; 96(18): e0116621, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069549

RESUMO

Studies on Ebola virus disease (EVD) survivors and clinical studies on Ebola virus (EBOV) vaccine candidates have pinpointed the importance of a strong antibody response in protection and survival from EBOV infection. However, little is known about the T cell responses to EBOV or EBOV vaccines. We used HLA-A*02:01 (HLA-A2) transgenic mice to study HLA-A2-specific T cell responses elicited following vaccination with EBOV glycoprotein (EBOV-GP) presented with three different systems: (i) recombinant protein (rEBOV-GP), (ii) vesicular stomatitis replication-competent recombinant virus (VSV-EBOV-GP), and (iii) modified vaccinia Ankara virus recombinant (MVA-EBOV-GP). T cells from immunized animals were analyzed using peptide pools representing the entire GP region and individual peptides. Regardless of the vaccine formulation, we identified a minimal 9mer epitope containing an HLA-A2 motif (FLDPATTS), which was confirmed through HLA-A2 binding affinity and immunization studies. Using binding prediction software, we identified substitutions surrounding position 9 (S9V, P10V, and Q11V) that predicted enhanced binding to the HLA-A2 molecule. This enhanced binding was confirmed through in vitro binding studies and enhanced potency was shown with in vivo immunization studies using the enhanced sequences and the wild-type sequence. Of note, in silico studies predicted the enhanced 9mer epitope carrying the S9V substitution as the best overall HLA-A2 epitope for the full-length EBOV-GP. These results suggest that EBOV-GP-S9V and EBOV-GP-P10V represent more potent in vivo immunogens. Identification and enhancement of EBOV-specific human HLA epitopes could lead to the development of tools and reagents to induce more robust T cell responses in human subjects. IMPORTANCE Vaccine efficacy and immunity to viral infection are often measured by neutralizing antibody titers. T cells are specialized subsets of immune cells with antiviral activity, but this response is variable and difficult to track. We showed that the HLA-A2-specific T cell response to the Ebola virus glycoprotein can be enhanced significantly by a single residue substitution designed to improve an epitope binding affinity to one of the most frequent MHC alleles in the human population. This strategy could be applied to improve T cell responses to Ebola vaccines designed to elicit antibodies and adapted to target MHC alleles of populations in regions where endemic infections, like Ebola virus disease, are still causing outbreaks with concerning pandemic potential.


Assuntos
Aminoácidos , Ebolavirus , Epitopos de Linfócito T , Glicoproteínas , Doença pelo Vírus Ebola , Aminoácidos/metabolismo , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra Ebola/genética , Ebolavirus/genética , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Humanos , Camundongos , Proteínas Recombinantes , Vírus Vaccinia , Vesiculovirus
5.
PLoS One ; 17(3): e0264983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35271634

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease and mortality worldwide. Direct-acting antiviral (DAA) therapy leads to high cure rates. However, persons who inject drugs (PWID) are at risk for reinfection after cure and may require multiple DAA treatments to reach the World Health Organization's (WHO) goal of HCV elimination by 2030. Using an agent-based model (ABM) that accounts for the complex interplay of demographic factors, risk behaviors, social networks, and geographic location for HCV transmission among PWID, we examined the combination(s) of DAA enrollment (2.5%, 5%, 7.5%, 10%), adherence (60%, 70%, 80%, 90%) and frequency of DAA treatment courses needed to achieve the WHO's goal of reducing incident chronic infections by 90% by 2030 among a large population of PWID from Chicago, IL and surrounding suburbs. We also estimated the economic DAA costs associated with each scenario. Our results indicate that a DAA treatment rate of >7.5% per year with 90% adherence results in 75% of enrolled PWID requiring only a single DAA course; however 19% would require 2 courses, 5%, 3 courses and <2%, 4 courses, with an overall DAA cost of $325 million to achieve the WHO goal in metropolitan Chicago. We estimate a 28% increase in the overall DAA cost under low adherence (70%) compared to high adherence (90%). Our modeling results have important public health implications for HCV elimination among U.S. PWID. Using a range of feasible treatment enrollment and adherence rates, we report robust findings supporting the need to address re-exposure and reinfection among PWID to reduce HCV incidence.


Assuntos
Usuários de Drogas , Hepatite C Crônica , Hepatite C , Abuso de Substâncias por Via Intravenosa , Antivirais/uso terapêutico , Chicago/epidemiologia , Hepacivirus , Hepatite C/complicações , Hepatite C/tratamento farmacológico , Hepatite C/epidemiologia , Hepatite C Crônica/tratamento farmacológico , Humanos , Reinfecção , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/tratamento farmacológico , Abuso de Substâncias por Via Intravenosa/epidemiologia
6.
Gastroenterology ; 162(2): 562-574, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655573

RESUMO

BACKGROUND & AIMS: Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS: We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS: Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS: Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.


Assuntos
Variação Antigênica/imunologia , Antígenos Virais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Hepacivirus/imunologia , Testes de Neutralização/métodos , Proteínas do Envelope Viral/imunologia , Variação Antigênica/genética , Antígenos Virais/genética , Linhagem Celular Tumoral , Hepacivirus/genética , Hepatite C/prevenção & controle , Humanos , Imunogenicidade da Vacina , Reprodutibilidade dos Testes , Desenvolvimento de Vacinas , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/imunologia
7.
Vaccine ; 37(19): 2608-2616, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30962092

RESUMO

BACKGROUND AND AIMS: Persons who inject drugs (PWID) are at highest risk for acquiring and transmitting hepatitis C (HCV) infection. The recent availability of oral direct-acting antiviral (DAA) therapy with reported cure rates >90% can prevent HCV transmission, making HCV elimination an attainable goal among PWID. The World Health Organization (WHO) recently proposed a 90% reduction in HCV incidence as a key objective. However, given barriers to the use of DAAs in PWID, including cost, restricted access to DAAs, and risk of reinfection, combination strategies including the availability of effective vaccines are needed to eradicate HCV as a public health threat. This study aims to model the cost and efficacy of a dual modality approach using HCV vaccines combined with DAAs to reduce HCV incidence by 90% and prevalence by 50% in PWID populations. METHODS: We developed a mathematical model that represents the HCV epidemic among PWID and calibrated it to empirical data from metropolitan Chicago, Illinois. Four medical interventions were considered: vaccination of HCV naive PWID, DAA treatment, DAA treatment followed by vaccination, and, a combination of vaccination and DAA treatment. RESULTS: The combination of vaccination and DAAs is the lowest cost-expensive intervention for achieving the WHO target of 90% incidence reduction. The use of DAAs without a vaccine is much less cost-effective with the additional risk of reinfection after treatment. Vaccination of naïve PWID alone, even when scaled-up to all reachable PWID, cannot achieve 90% reduction of incidence in high-prevalence populations due to infections occurring before vaccination. Similarly, the lowest cost-expensive way to halve prevalence in 15 years is through the combination of vaccination and DAAs. CONCLUSIONS: The modeling results underscore the importance of developing an effective HCV vaccine and augmenting DAAs with vaccines in HCV intervention strategies in order to achieve efficient reductions in incidence and prevalence.


Assuntos
Usuários de Drogas , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Hepatite C/transmissão , Modelos Teóricos , Vacinas contra Hepatite Viral/imunologia , Algoritmos , Chicago/epidemiologia , Análise Custo-Benefício , Custos de Cuidados de Saúde , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Incidência , Prevalência , Vacinação/métodos , Potência de Vacina
8.
Proc Winter Simul Conf ; 2019: 1008-1019, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32624641

RESUMO

Hepatitis C (HCV) is a leading cause of chronic liver disease and mortality worldwide and persons who inject drugs (PWID) are at the highest risk for acquiring and transmitting HCV infection. We developed an agent-based model (ABM) to identify and optimize direct-acting antiviral (DAA) therapy scale-up and treatment strategies for achieving the World Health Organization (WHO) goals of HCV elimination by the year 2030. While DAA is highly efficacious, it is also expensive, and therefore intervention strategies should balance the goals of elimination and the cost of the intervention. Here we present and compare two methods for finding PWID treatment enrollment strategies by conducting a standard model parameter sweep and compare the results to an evolutionary multi-objective optimization algorithm. The evolutionary approach provides a pareto-optimal set of solutions that minimizes treatment costs and incidence rates.

9.
Methods Mol Biol ; 1911: 421-432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30593642

RESUMO

Enzyme-linked immunosorbent assays (ELISAs) enable rapid detection and quantitation of antibodies in samples. Such assays can be highly sensitive and can be performed in most laboratories with basic equipment. Although detecting binding antibodies to the surface proteins of most pathogens by ELISA is not always indicative of antibody function, i.e., neutralizing activity of antibodies, the results can be used as a first step toward more in-depth analysis of antibody responses. Here we describe a method that can be used to standardize ELISAs for the detection of HCV envelope antibodies across laboratories and provide adaptations of the method to further characterize antibody responses in serum samples.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/isolamento & purificação , Hepatite C/imunologia , Lectinas de Ligação a Manose/imunologia , Lectinas de Plantas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Cricetulus , Ensaio de Imunoadsorção Enzimática/instrumentação , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Hepacivirus/metabolismo , Anticorpos Anti-Hepatite C/imunologia , Humanos , Testes de Neutralização/instrumentação , Testes de Neutralização/métodos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
10.
Sci Transl Med ; 10(449)2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997251

RESUMO

The major route of hepatitis C virus (HCV) transmission in the United States is injection drug use. We hypothesized that if an HCV vaccine were available, vaccination could affect HCV transmission among people who inject drugs by reducing HCV titers after viral exposure without necessarily achieving sterilizing immunity. To investigate this possibility, we developed a mathematical model to determine transmission probabilities relative to the HCV RNA titers of needle/syringe-sharing donors. We simulated sharing of two types of syringes fitted with needles that retain either large or small amounts of fluid after expulsion. Using previously published viral kinetics data from both naïve subjects infected with HCV and reinfected individuals who had previously cleared an HCV infection, we estimated transmission risk between pairs of serodiscordant injecting drug users, accounting for syringe type, rinsing, and sharing frequency. We calculated that the risk of HCV transmission through syringe sharing increased ~10-fold as viral titers (log10 IU/ml) increased ~25-fold. Cumulative analyses showed that, assuming sharing episodes every 7 days, the mean transmission risk over the first 6 months was >90% between two people sharing syringes when one had an HCV RNA titer >5 log10 IU/ml. For those with preexisting immunity that rapidly controlled HCV, the cumulative risk decreased to 1 to 25% depending on HCV titer and syringe type. Our modeling approach demonstrates that, even with transient viral replication after exposure during injection drug use, HCV transmission among people sharing syringes could be reduced through vaccination if an HCV vaccine were available.


Assuntos
Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatite C/transmissão , Abuso de Substâncias por Via Intravenosa/virologia , Vacinas contra Hepatite Viral/imunologia , Carga Viral/fisiologia , Células Cultivadas , Hepatite C/sangue , Humanos , Cinética , Agulhas , Probabilidade , RNA Viral/genética , Fatores de Risco , Abuso de Substâncias por Via Intravenosa/sangue
11.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29321304

RESUMO

Hepatitis C virus (HCV) is the leading cause of chronic hepatitis in humans. Several host molecules participate in HCV cell entry, but this process remains unclear. The complete unraveling of the HCV entry process is important to further understand viral pathogenesis and develop therapeutics. Human hepatitis A virus (HAV) cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, functions as a phospholipid receptor involved in cell entry of several enveloped viruses. Here, we studied the role of HAVCR1 in HCV infection. HAVCR1 antibody inhibited entry in a dose-dependent manner. HAVCR1 soluble constructs neutralized HCV, which did not require the HAVCR1 mucinlike region and was abrogated by a mutation of N to A at position 94 (N94A) in the Ig variable (IgV) domain phospholipid-binding pocket, indicating a direct interaction of the HAVCR1 IgV domain with HCV virions. However, knockout of HAVCR1 in Huh7 cells reduced but did not prevent HCV growth. Interestingly, the mouse HAVCR1 ortholog, also a phospholipid receptor, did not enhance infection and a soluble form failed to neutralize HCV, although replacement of the mouse IgV domain with the human HAVCR1 IgV domain restored the enhancement of HCV infection. Mutations in the cytoplasmic tail revealed that direct HAVCR1 signaling is not required to enhance HCV infection. Our data show that the phospholipid-binding function and other determinant(s) in the IgV domain of human HAVCR1 enhance HCV infection. Although the exact mechanism is not known, it is possible that HAVCR1 facilitates entry by stabilizing or enhancing attachment, leading to direct interactions with specific receptors, such as CD81.IMPORTANCE Hepatitis C virus (HCV) enters cells through a multifaceted process. We identified the human hepatitis A virus cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, as a facilitator of HCV entry. Antibody blocking and silencing or knockout of HAVCR1 in hepatoma cells reduced HCV entry. Our findings that the interaction of HAVCR1 with HCV early during infection enhances entry but is not required for infection support the hypothesis that HAVCR1 facilitates entry by stabilizing or enhancing virus binding to the cell surface membrane and allowing the correct virus-receptor positioning for interaction with the main HCV receptors. Furthermore, our data show that in addition to the phospholipid-binding function of HAVCR1, the enhancement of HCV infection involves other determinants in the IgV domain of HAVCR1. These findings expand the repertoire of molecules that HCV uses for cell entry, adding to the already complex mechanism of HCV infection and pathogenesis.


Assuntos
Hepacivirus/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Hepatite C/metabolismo , Mutação de Sentido Incorreto , Transdução de Sinais , Internalização do Vírus , Substituição de Aminoácidos , Linhagem Celular , Hepacivirus/genética , Receptor Celular 1 do Vírus da Hepatite A/genética , Hepatite C/genética , Hepatite C/patologia , Humanos , Domínios Proteicos , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
12.
PLoS One ; 12(7): e0181578, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732046

RESUMO

T-cell based vaccines have been considered as attractive candidates for prevention of hepatitis C virus (HCV) infections. In this study we compared the magnitude and phenotypic characteristics of CD8+ T-cells induced by three commonly used viral vectors, Adenovirus-5 (Ad5), Vaccinia virus (VV) and Modified Vaccinia Ankara (MVA) expressing the HCV NS3/4A protein. C57/BL6 mice were primed with DNA expressing NS3/4A and boosted with each of the viral vectors in individual groups of mice. We then tracked the vaccine-induced CD8+ T-cell responses using pentamer binding and cytokine production analysis. Overall, our data indicate that the memory cells induced by Ad5 were inferior to those induced by VV or MVA. We found that Ad5 boosting resulted in rapid expansion and significantly higher frequencies of NS3-specific T-cells compared to VV and MVA boosting. However, the functional profiles, assessed through analysis of the memory cell marker CD127 and the anti-apoptotic molecule Bcl-2 in the blood, spleen, and liver; and measurements of interferon-gamma, tumor necrosis factor-alpha, and interleukin-2 production indicated significantly lower frequencies of long-lived memory T-cells following Ad5 boosting compared to VV and MVA. This same set of analyses suggested that the memory cells induced following boosting with MVA were superior to those induced by both Ad5 and VV. This superiority of the MVA-induced CD8+ T-cells was confirmed following surrogate challenge of mice with a recombinant mouse herpes virus expressing the HCV NS3 protein. Higher levels of NS3-specific CD8+ T-cells displaying the functional markers CD69, Ki67 and Granzyme B were found in the spleens of mice boosted with MVA compared to VV and Ad5, both alone and in combination. These data suggest that MVA may be a more successful viral vector for induction of effective CD8+ T-cell responses against hepatitis C virus.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Imunogenicidade da Vacina/imunologia , Memória Imunológica/imunologia , Adenoviridae/imunologia , Animais , Feminino , Vetores Genéticos/imunologia , Imunização Secundária/métodos , Interferon gama/imunologia , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2 , Fator de Necrose Tumoral alfa/imunologia , Vaccinia/imunologia , Vírus Vaccinia/imunologia
13.
Antiviral Res ; 144: 281-285, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28673800

RESUMO

BACKGROUND: Cases of sustained-virological response (SVR or cure) after an ultra-short duration (≤27 days) of direct-acting antiviral (DAA)-based therapy, despite HCV being detected at end of treatment (EOT), have been reported. Established HCV mathematical models that predict the treatment duration required to achieve cure do not take into account the possibility that the infectivity of virus produced during treatment might be reduced. The aim of this study was to develop a new mathematical model that considers the fundamental and critical concept that HCV RNA in serum represents both infectious virus (Vi) and non-infectious virus (Vni) in order to explain the observation of cure with ultrashort DAA therapy. METHODS: Established HCV models were compared to the new mathematical model to retrospectively explain cure in 2 patients who achieved cure after 24 or 27 days of paritaprevir, ombitasvir, dasabuvir, ritonavir and ribavirin or sofosbuvir plus ribavirin, respectively. RESULTS: Fitting established models with measured longitudinal HCV viral loads indicated that in both cases, cure would not have been expected without an additional 3-6 weeks of therapy after the actual EOT. In contrast, the new model fits the observed outcome by considering that in addition to blocking Vi and Vni production (ε∼0.998), these DAA + ribavirin treatments further enhanced the ratio of Vni to Vi, thus increasing the log (Vni/Vi) from 1 at pretreatment to 6 by EOT, which led to <1 infectious-virus particle in the extracellular body fluid (i.e., cure) prior to EOT. CONCLUSIONS: This new model can explain cure after short duration of DAA + ribavirin therapy by suggesting that a minimum 6-fold increase of log (Vni/Vi) results from drug-induced enhancement of the Vni/Vi.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/isolamento & purificação , Hepatite C Crônica/tratamento farmacológico , Modelos Teóricos , Resposta Viral Sustentada , Carga Viral , Humanos , Estudos Longitudinais , Estudos Retrospectivos , Fatores de Tempo
15.
PLoS One ; 10(9): e0137993, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26421722

RESUMO

People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID to build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010-2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(± 2)% to 36(± 5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(± 5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(± 1) to 40(± 2) with a corresponding increase from 59(± 2)% to 80(± 6)% in the proportion of the population >30 years old. Our studies highlight the importance of analyzing subpopulations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.


Assuntos
Simulação por Computador , Hepatite C/epidemiologia , Dinâmica Populacional/tendências , Abuso de Substâncias por Via Intravenosa/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Adolescente , Adulto , Patógenos Transmitidos pelo Sangue , Chicago/epidemiologia , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Programas de Troca de Agulhas/estatística & dados numéricos , Previsões Demográficas , Vigilância da População , Prevalência , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/virologia , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/virologia , Adulto Jovem
16.
EBioMedicine ; 2(8): 859-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26425692

RESUMO

Vaccine reverse engineering is emerging as an important approach to vaccine antigen identification, recently focusing mainly on structural characterization of interactions between neutralizing monoclonal antibodies (mAbs) and antigens. Using mAbs that bind unknown antigen structures, we sought to probe the intrinsic features of antibody antigen-binding sites with a high complexity peptide library, aiming to identify conformationally optimized mimotope antigens that capture mAb-specific epitopes. Using a high throughput sequencing-enhanced messenger ribonucleic acid (mRNA) display approach, we identified high affinity binding peptides for a hepatitis C virus neutralizing mAb. Immunization with the selected peptides induced neutralizing activity similar to that of the original mAb. Antibodies elicited by the most commonly selected peptides were predominantly against specific epitopes. Thus, using mRNA display to interrogate mAbs permits high resolution identification of functional peptide antigens that direct targeted immune responses, supporting its use in vaccine reverse engineering for pathogens against which potent neutralizing mAbs are available. RESEARCH IN CONTEXT: We used a large number of randomly produced small proteins ("peptides") to identify peptides containing specific protein sequences that bind efficiently to an antibody that can prevent hepatitis C virus infection in cell culture. After the identified peptides were injected into mice, the mice produced their own antibodies with characteristics similar to the original antibody. This approach can provide previously unavailable information about antibody binding and could also be useful in developing new vaccines.


Assuntos
Antígenos Virais , Epitopos , Hepacivirus , Engenharia de Proteínas , RNA Mensageiro , Vacinas contra Hepatite Viral , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Epitopos/genética , Epitopos/imunologia , Hepacivirus/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia
17.
Hepatology ; 62(6): 1670-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26251214

RESUMO

UNLABELLED: Hepatitis C virus (HCV) neutralization occurring at the E2 region 412-426 (EP-I) could be enhanced when antibodies directed specifically to the E2 region 434-446 (EP-II) were removed from serum samples of persistently infected patients and vaccinated chimpanzees, a phenomenon of so-called antibody interference. Here, we show that this type of interference can be observed in individuals after immunization with recombinant E1E2 proteins. One hundred twelve blinded serum samples from a phase I, placebo-controlled, dose escalation trial using recombinant HCV E1E2 with MF59C.1 adjuvant in healthy HCV-negative adults were tested in enzyme-linked immunosorbent assay for binding reactivity to peptides representing the E2 regions 412-426 (EP-I) and 434-446 (EP-II). All samples were subsequently tested for neutralizing activity using cell-culture HCV 1a(H77)/2a chimera, HCV pseudotype particles (HCVpp) H77, and HCVpp HCV-1 after treatment to remove EP-II-specific antibodies or mock treatment with a control peptide. Among the 112 serum samples, we found 22 double positive (EP-I and EP-II), 6 EP-II positive only, 14 EP-I positive only, and 70 double negative. Depleting EP-II antibodies from double-positive serum samples increased 50% inhibitory dose (ID50) neutralizing antibody titers (up to 4.9-fold) in up to 72% of samples (P ≤ 0.0005), contrasting with ID50 neutralization titer increases in 2 of 70 double-negative samples (2.9%; P > 0.5). In addition, EP-I-specific antibody levels in serum samples showed a significant correlation with ID50 neutralization titers when EP-II antibodies were removed (P < 0.0003). CONCLUSION: These data show that antibodies to the region 434-446 are induced during immunization of individuals with recombinant E1E2 proteins, and that these antibodies can mask effective neutralizing activity from EP-I-specific antibodies. Elicitation of EP-II-specific antibodies with interfering capacity should be avoided in producing an effective cross-neutralizing vaccine aimed at the HCV envelope proteins.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Humanos , Pan troglodytes
18.
PLoS One ; 10(8): e0135901, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295805

RESUMO

BACKGROUND/AIM: New direct-acting antivirals (DAAs) provide an opportunity to combat hepatitis C virus (HCV) infection in persons who inject drugs (PWID). Here we use a mathematical model to predict the impact of a DAA-treatment scale-up on HCV prevalence among PWID and the estimated cost in metropolitan Chicago. METHODS: To estimate the HCV antibody and HCV-RNA (chronic infection) prevalence among the metropolitan Chicago PWID population, we used empirical data from three large epidemiological studies. Cost of DAAs is assumed $50,000 per person. RESULTS: Approximately 32,000 PWID reside in metropolitan Chicago with an estimated HCV-RNA prevalence of 47% or 15,040 cases. Approximately 22,000 PWID (69% of the total PWID population) attend harm reduction (HR) programs, such as syringe exchange programs, and have an estimated HCV-RNA prevalence of 30%. There are about 11,000 young PWID (<30 years old) with an estimated HCV-RNA prevalence of 10% (PWID in these two subpopulations overlap). The model suggests that the following treatment scale-up is needed to reduce the baseline HCV-RNA prevalence by one-half over 10 years of treatment [cost per year, min-max in millions]: 35 per 1,000 [$50-$77] in the overall PWID population, 19 per 1,000 [$20-$26] for persons in HR programs, and 5 per 1,000 [$3-$4] for young PWID. CONCLUSIONS: Treatment scale-up could dramatically reduce the prevalence of chronic HCV infection among PWID in Chicago, who are the main reservoir for on-going HCV transmission. Focusing treatment on PWID attending HR programs and/or young PWID could have a significant impact on HCV prevalence in these subpopulations at an attainable cost.


Assuntos
Antivirais/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Modelos Estatísticos , RNA Viral/antagonistas & inibidores , Abuso de Substâncias por Via Intravenosa/tratamento farmacológico , Adulto , Fatores Etários , Antivirais/economia , Chicago/epidemiologia , Análise Custo-Benefício , Redução do Dano/ética , Anticorpos Anti-Hepatite C/sangue , Hepatite C Crônica/complicações , Hepatite C Crônica/economia , Hepatite C Crônica/epidemiologia , Humanos , Pessoa de Meia-Idade , Prevalência , RNA Viral/sangue , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/economia , Abuso de Substâncias por Via Intravenosa/epidemiologia
19.
Hepatology ; 59(3): 803-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24123114

RESUMO

UNLABELLED: Vaccination of chimpanzees against hepatitis C virus (HCV) using T-cell-based vaccines targeting nonstructural proteins has not resulted in the same levels of control and clearance as those seen in animals reexposed after HCV clearance. We hypothesized that the outcome of infection depends on the different subtypes of activated T cells. We used multicolor flow cytometry to evaluate activation (CD38+/HLA-DR+) and proliferation (Ki67+/Bcl-2-low) profiles of CD4+ and CD8+ T cells in peripheral blood before and after challenge in chimpanzees vaccinated using DNA/adenovirus, mock-vaccinated, and chimpanzees that had spontaneously cleared infection (rechallenged). The frequencies of activated or proliferating CD8+ T cells peaked at 2 weeks postchallenge in the vaccinated and rechallenged animals, coinciding with reductions in viral titers. However, the magnitude of the responses did not correlate with outcome or sustained control of viral replication. In contrast, proliferation of the CD8+ T cells coexpressing HLA-DR either with or without CD38 expression was significantly higher at challenge in animals that rapidly cleared HCV and remained so throughout the follow-up period. CONCLUSION: Our data suggest that the appearance of proliferating HLA-DR+/CD8+ T cells can be used as a predictor of a successfully primed memory immune response against HCV and as a marker of effective vaccination in clinical trials.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos HLA-DR/imunologia , Hepatite C/imunologia , Pan troglodytes/imunologia , Pan troglodytes/virologia , ADP-Ribosil Ciclase 1/imunologia , Vacinas contra Adenovirus/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Citometria de Fluxo , Antígenos HLA-DR/genética , Memória Imunológica/imunologia , Vacinas contra Hepatite Viral/imunologia , Replicação Viral/imunologia
20.
Mol Pharm ; 10(12): 4590-4602, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24152340

RESUMO

Plant or microbial lectins are known to exhibit potent antiviral activities against viruses with glycosylated surface proteins, yet the mechanism(s) by which these carbohydrate-binding proteins exert their antiviral activities is not fully understood. Hepatitis C virus (HCV) is known to possess glycosylated envelope proteins (gpE1E2) and to be potently inhibited by lectins. Here, we tested in detail the antiviral properties of the newly discovered Microcystis viridis lectin (MVL) along with cyanovirin-N (CV-N) and Galanthus nivalis agglutinin (GNA) against cell culture HCV, as well as their binding properties toward viral particles, target cells, and recombinant HCV glycoproteins. Using infectivity assays, CV-N, MVL, and GNA inhibited HCV with IC50 values of 0.6 nM, 30.4 nM, and 11.1 nM, respectively. Biolayer interferometry analysis demonstrated a higher affinity of GNA to immobilized recombinant HCV glycoproteins compared to CV-N and MVL. Complementary studies, including fluorescence-activated cell sorting (FACS) analysis, confocal microscopy, and pre- and post-virus binding assays, showed a complex mechanism of inhibition for CV-N and MVL that includes both viral and cell association, while GNA functions by binding directly to the viral particle. Combinations of GNA with CV-N or MVL in HCV infection studies revealed synergistic inhibitory effects, which can be explained by different glycan recognition profiles of the mainly high-mannoside specific lectins, and supports the hypothesis that these lectins inhibit through different and complex modes of action. Our findings provide important insights into the mechanisms by which lectins inhibit HCV infection. Overall, the data suggest MVL and CV-N have the potential for toxicity due to interactions with cellular proteins while GNA may be a better therapeutic agent due to specificity for the HCV gpE1E2.


Assuntos
Antivirais/farmacologia , Proteínas de Bactérias/farmacologia , Proteínas de Transporte/farmacologia , Hepacivirus/efeitos dos fármacos , Lectinas de Ligação a Manose/farmacologia , Microcystis/metabolismo , Lectinas de Plantas/farmacologia , Linhagem Celular Tumoral , Cianobactérias/metabolismo , Glicoproteínas/metabolismo , Humanos , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...